
Build a Tetris Game in Python
This tutorial guides you through building an object-oriented Tetris game using Python and Pygame,
with correct Tetromino logic, real-Ɵme controls, clean geometry (no grid padding), and a restartable
game loop.

Prerequisites
You should:

• Understand basic Python syntax and structures (loops, classes, funcƟons)

• Be familiar with 2D coordinate systems

• Have Python 3.7+ installed

Install Pygame
To get started, install the pygame library:

pip install pygame

This provides tools for handling graphics, input, Ɵming, and drawing rectangles for Tetris blocks.

Game Constants and Shape DefiniƟons
We begin by imporƟng required modules and defining global constants for the screen, game board,
colors, and Tetromino shapes:

import pygame
import random
import sys
pygame.init()
Screen dimensions
WIDTH, HEIGHT = 300, 600
COLS, ROWS = 10, 20
BLOCK_SIZE = WIDTH // COLS

Timing
FPS = 60
FALL_DELAY = 500 # ms between automatic drops

Colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
COLORS = [
 (0, 255, 255), # I
 (0, 0, 255), # J
 (255, 165, 0), # L
 (255, 255, 0), # O
 (0, 255, 0), # S
 (128, 0, 128), # T
 (255, 0, 0) # Z
]

Canonical Tetromino shape definitions (no padding, clean geometry)

SHAPES = [
 [[1, 1, 1, 1]], # I
 [[1, 0, 0], [1, 1, 1]], # J
 [[0, 0, 1], [1, 1, 1]], # L
 [[1, 1], [1, 1]], # O
 [[0, 1, 1], [1, 1, 0]], # S
 [[0, 1, 0], [1, 1, 1]], # T
 [[1, 1, 0], [0, 1, 1]] # Z
]

Explaining the Shape Format

Each shape is defined using 1s and 0s in a 2D list. This format is simple to manipulate, rotate, and
map to screen coordinates.

SHAPES = [

The coordinates of each 1 in a shape map directly to block posiƟons on the board using the
Tetromino's current .x and .y offsets.

Each Tetromino is a 2D List:

• Each inner list is a row of the shape.

• Each 1 represents a block in that row. A 0 means empty space.

This format allows us to easily:

• Render the block on a grid

• Rotate the block by transposing and reversing rows

• Check for collisions using simple 2D grid math

For example:

[[1, 0, 0],
 [1, 1, 1]]

This is the "J" piece:

• Top row has one block (leŌmost)

• BoƩom row has three blocks

This will look like this

Screen Dimensions

WIDTH, HEIGHT = 300, 600

• WIDTH: Total screen width in pixels.

• HEIGHT: Total screen height in pixels.

• These are chosen to fit a 10x20 grid comfortably.

Grid ConfiguraƟon

COLS, ROWS = 10, 20

BLOCK_SIZE = WIDTH // COLS

• COLS: Number of columns on the board (standard Tetris = 10).

• ROWS: Number of verƟcal cells (standard = 20).

• BLOCK_SIZE: Each Tetromino block will be this many pixels wide and tall.

This ensures that the blocks are square and the enƟre playfield fits into the window.

Timing

FPS = 60

FALL_DELAY = 500

• FPS: How many frames per second to update the game screen. Affects animaƟon
smoothness.

• FALL_DELAY: Time in milliseconds before the current Tetromino automaƟcally drops by 1 cell.

You can reduce FALL_DELAY dynamically to increase difficulty as the player progresses.

Colors

COLORS = [...]

Each Tetromino gets a unique RGB color so the player can disƟnguish them easily. These are used to
color the blocks during rendering.

Create the Tetromino Class
The Tetromino class represents a single falling Tetris shape (such as I, J, L, O, S, T, or Z). It
encapsulates all the properƟes and behaviors required to manage a piece during gameplay.

Each Tetromino is treated as an object with:

• Shape geometry: Defined as a 2D list (self.shape) where each 1 represents a block and 0 is
empty space.

• Color: The RGB color used when drawing this shape on screen.

• Grid posiƟon: The shape's top-leŌ anchor on the game grid, controlled by self.x and self.y.

• RotaƟon logic: A method to rotate the shape in-place, without needing predefined rotaƟon
states.

This object-oriented design keeps the behavior of each piece self-contained and modular, allowing
the game engine to work with all Tetrominoes generically.

How It Works

class Tetromino:
 def __init__(self, shape, color):

 self.shape = shape
 self.color = color
 self.x = COLS // 2 - len(shape[0]) // 2 # center hzl
 self.y = 0 # spawn at top

shape is a 2D list like [[1, 1, 1, 1]] or [[1, 0, 0], [1, 1, 1]]. Each 1 represents an acƟve block in the
piece.

color is the color is selected from the predefined COLORS list and corresponds to the shape type.

self.x is the horizontal posiƟon on the grid where the Tetromino starts. It is centered by subtracƟng
half the width of the shape from the midpoint of the board (COLS // 2).

self.y is the verƟcal posiƟon always begins at 0 so the piece enters from the top row.

RotaƟon Logic

def rotate(self):
 self.shape = [list(row) for row in zip(*self.shape[::-1])]

This is a 90-degree clockwise rotaƟon using a common Python idiom:

self.shape[::-1] reverses the rows (top to boƩom becomes boƩom to top).

zip(*...) transposes the matrix (columns become rows).

list(row) ensures each new row is mutable.

Example:

Before rotaƟon:

[[1, 0, 0],
 [1, 1, 1]]

AŌer rotaƟon:

[[1, 1],
 [1, 0],
 [1, 0]]

Occupied Grid Cells

def get_cells(self):
 return [(self.x + j, self.y + i)
 for i, row in enumerate(self.shape)
 for j, val in enumerate(row) if val]

This method calculates the absolute (x, y) posiƟons on the board where the Tetromino’s blocks
currently are.

• i = row index within the shape matrix (verƟcal offset)

• j = column index within the shape matrix (horizontal offset)

• self.x + j translates local shape column to board column

• self.y + i translates local shape row to board row

• Only posiƟons where val is 1 are returned (i.e., where blocks exist)

Build the Game Class
The Game class is the central controller of the enƟre Tetris engine. It orchestrates the game state,
input handling, collision detecƟon, rendering, and the rules of play.

What This Class Manages

• The board state — a 2D grid that keeps track of locked blocks

• The currently falling Tetromino

• Spawning and rotaƟng new Tetrominoes

• Moving pieces leŌ, right, or down

• Collision detecƟon and locking when a piece lands

• Clearing full lines

• DetecƟng game over condiƟons

• Handling user input via the keyboard

• Rendering all elements to the screen each frame

• Providing a way to restart aŌer game over

Data Structures

self.grid = [[BLACK for _ in range(COLS)] for _ in range(ROWS)]

The board is represented as a 2D list (list of rows).

Each cell holds a color:

BLACK means empty

Any other RGB color means that cell is occupied by a locked Tetromino block

This makes rendering and logic simple — if grid[y][x] != BLACK, it’s occupied

Core Methods (with Concepts)

spawn_tetromino()

• Creates a new random Tetromino using a shape/color pair.

• Places it at the top of the board (y = 0), centered.

• If the spawn posiƟon is invalid (i.e. overlaps locked blocks), the game is over.

valid_posiƟon(tetromino, dx=0, dy=0)

• Checks whether moving the given Tetromino by (dx, dy) would result in a valid state.

• Valid = does not go out of bounds and does not collide with locked cells on the grid.

lock_tetromino()

• Called when a Tetromino can no longer move down.

• Adds all of its occupied cells to the grid (converts falling block into staƟc blocks).

• Triggers line-clearing logic.

clear_lines()

• Scans the grid for full rows (rows with no BLACK blocks).

• Removes full rows and inserts empty ones at the top.

• This is where the game gets its core challenge mechanic and scoring potenƟal.

drop_one()

• Moves the current Tetromino down by one row.

• If it cannot move, it locks it in place.

hard_drop()

• Instantly drops the current Tetromino all the way to the lowest valid posiƟon and locks it.

• Triggered by pressing the SPACE key.

• Improves game speed and responsiveness.

rotate()

• AƩempts to rotate the current Tetromino.

• If the rotated shape causes an invalid posiƟon, the rotaƟon is reverted.

draw_board()

• Draws the current state of the grid, block by block.

• Uses the color stored in each grid cell.

• Only draws blocks that are not BLACK.

draw_current()

• Draws the current falling Tetromino using its get_cells() coordinates.

Main Game Loop (run())

This is the heart of the game — where everything is updated and rendered frame by frame.

Inside run():

1. Clock Tick

self.clock.tick(FPS)

Regulates the speed of the game to 60 frames per second.

2. Handle Events

for event in pygame.event.get():
 ...

Processes keyboard input (leŌ, right, rotate, hard drop, restart).

3. Auto-Fall Timer

if pygame.time.get_ticks() - self.drop_time > FALL_DELAY:
self.drop_one()

Every FALL_DELAY ms, the Tetromino automaƟcally drops one row.

4. Render Scene

o Clear screen

o Draw locked blocks (draw_board())

o Draw current piece (draw_current())

o Show game over screen if needed

5. Display Frame

pygame.display.flip()

Refreshes the screen with the updated content.

Game Over & Restart

• If a Tetromino spawns in an invalid posiƟon (i.e. overlapping blocks at the top), the game sets
self.running = False and shows a game over screen.

• Pressing the R key resets the game using the reset() method.

Run the Game
The if __name__ == "__main__" block creates a Game object and starts the game loop:

if __name__ == "__main__":
 Game().run()

OpƟonal Extensions
• Add a scoring system: Track lines cleared

• Add preview next piece

• Add a hold feature (swap current with held Tetromino)

• Add levels and speed increase

• Add sound effects or music

• Show a ghost piece (shadow where it will land)

