Build a Tetris Game in Python

This tutorial guides you through building an object-oriented Tetris game using Python and Pygame,
with correct Tetromino logic, real-time controls, clean geometry (no grid padding), and a restartable
game loop.

Prerequisites
You should:

e Understand basic Python syntax and structures (loops, classes, functions)
e Be familiar with 2D coordinate systems

e Have Python 3.7+ installed

Install Pygame
To get started, install the pygame library:

pip install pygame

This provides tools for handling graphics, input, timing, and drawing rectangles for Tetris blocks.

Game Constants and Shape Definitions

We begin by importing required modules and defining global constants for the screen, game board,
colors, and Tetromino shapes:

import pygame

import random

import sys

pygame.init ()

Screen dimensions

WIDTH, HEIGHT = 300, 600
COLS, ROWS = 10, 20

BLOCK SIZE WIDTH // COLS

Timing
FPS = 60
FALL DELAY

500 # ms between automatic drops

Colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)

COLORS = [
(0, 255, 255), # I
(0, 0, 255), # J
(255 165, 0), # L
(255, 255, 0), # O
(0, 255, 0), # S
(128 0, 128) # T
(255, 0, 0) # Z

]

Canonical Tetromino shape definitions (no padding, clean geometry)

SHAPES = [
(1, 1, 1, 111, # I
(f, o, o1, [1, 1, 111, # J
(o, o, 11, [1, 1, 111, # L
(rr, 11, (1, 111, # 0
(o, », 11, [1, 1, 011, # S
(o, », o1, [z, 1, 111, # T
(f, 1, ol, f[o, 1, 111 # Z

]

Explaining the Shape Format

Each shape is defined using 1s and Os in a 2D list. This format is simple to manipulate, rotate, and
map to screen coordinates.

SHAPES = [

The coordinates of each 1 in a shape map directly to block positions on the board using the
Tetromino's current .x and .y offsets.

Each Tetromino is a 2D List:

e Each inner list is a row of the shape.

e Each 1 represents a block in that row. A 0 means empty space.
This format allows us to easily:

¢ Render the block on a grid

e Rotate the block by transposing and reversing rows

e Check for collisions using simple 2D grid math
For example:

([1,0,0],
[1,1,1]]

This is the ")" piece:
e Top row has one block (leftmost)
e Bottom row has three blocks

This will look like this

Screen Dimensions

WIDTH, HEIGHT = 300, 600
e WIDTH: Total screen width in pixels.
e HEIGHT: Total screen height in pixels.

e These are chosen to fit a 10x20 grid comfortably.

Grid Configuration

COLS, ROWS

10, 20
BLOCK SIZE = WIDTH // COLS

e COLS: Number of columns on the board (standard Tetris = 10).

e ROWS: Number of vertical cells (standard = 20).

e BLOCK_SIZE: Each Tetromino block will be this many pixels wide and tall.
This ensures that the blocks are square and the entire playfield fits into the window.
Timing
FPS = 60
FALL DELAY = 500

e FPS: How many frames per second to update the game screen. Affects animation
smoothness.

e FALL_DELAY: Time in milliseconds before the current Tetromino automatically drops by 1 cell.
You can reduce FALL DELAY dynamically to increase difficulty as the player progresses.
Colors
COLORS = [...]

Each Tetromino gets a unique RGB color so the player can distinguish them easily. These are used to
color the blocks during rendering.

Create the Tetromino Class

The Tetromino class represents a single falling Tetris shape (such as |, J,L, O, S, T, or Z). It
encapsulates all the properties and behaviors required to manage a piece during gameplay.

Each Tetromino is treated as an object with:

e Shape geometry: Defined as a 2D list (self.shape) where each 1 represents a block and 0 is
empty space.

e Color: The RGB color used when drawing this shape on screen.
e Grid position: The shape's top-left anchor on the game grid, controlled by self.x and self.y.

¢ Rotation logic: A method to rotate the shape in-place, without needing predefined rotation
states.

This object-oriented design keeps the behavior of each piece self-contained and modular, allowing
the game engine to work with all Tetrominoes generically.

How It Works

class Tetromino:
def init (self, shape, color):

self.shape = shape
self.color = color

self.x = COLS // 2 - len(shapel0]) // 2 # center hzl

self.y = 0 # spawn at top

shape is a 2D list like [[1, 1, 1, 1]] or [[1, O, 0], [1, 1, 1]]. Each 1 represents an active block in the

piece.

color is the color is selected from the predefined COLORS list and corresponds to the shape type.

self.x is the horizontal position on the grid where the Tetromino starts. It is centered
half the width of the shape from the midpoint of the board (COLS // 2).

self.y is the vertical position always begins at 0 so the piece enters from the top row.
Rotation Logic

def rotate(self):
self.shape = [list(row) for row in zip(*self.shapel:

This is a 90-degree clockwise rotation using a common Python idiom:
self.shape[::-1] reverses the rows (top to bottom becomes bottom to top).
zip(*...) transposes the matrix (columns become rows).
list(row) ensures each new row is mutable.

Example:

Before rotation:

([1,0,0],
[1,1,1]]

After rotation:

(1,11,
[1I O]I
(1,01]

Occupied Grid Cells

def get cells(self):
return [(self.x + j, self.y + 1)
for i, row in enumerate (self.shape)
for j, val in enumerate(row) if wvall

by subtracting

:-11)1

This method calculates the absolute (x, y) positions on the board where the Tetromino’s blocks

currently are.
e i=row index within the shape matrix (vertical offset)
e j=column index within the shape matrix (horizontal offset)
e self.x +jtranslates local shape column to board column

e selfy +itranslates local shape row to board row

e Only positions where val is 1 are returned (i.e., where blocks exist)

Build the Game Class

The Game class is the central controller of the entire Tetris engine. It orchestrates the game state,
input handling, collision detection, rendering, and the rules of play.

What This Class Manages

o The board state — a 2D grid that keeps track of locked blocks

e The currently falling Tetromino

e Spawning and rotating new Tetrominoes

e Moving pieces left, right, or down

e Collision detection and locking when a piece lands

e Clearing full lines

e Detecting game over conditions

e Handling user input via the keyboard

e Rendering all elements to the screen each frame

e Providing a way to restart after game over
Data Structures
self.grid = [[BLACK for _ in range(COLS)] for _ in range (ROWS)]
The board is represented as a 2D list (list of rows).
Each cell holds a color:

BLACK means empty
Any other RGB color means that cell is occupied by a locked Tetromino block

This makes rendering and logic simple — if grid[y][x] != BLACK, it’s occupied
Core Methods (with Concepts)
spawn_tetromino()

e Creates a new random Tetromino using a shape/color pair.

e Places it at the top of the board (y = 0), centered.

e If the spawn position is invalid (i.e. overlaps locked blocks), the game is over.
valid_position(tetromino, dx=0, dy=0)

e Checks whether moving the given Tetromino by (dx, dy) would result in a valid state.

e Valid = does not go out of bounds and does not collide with locked cells on the grid.

lock_tetromino()
e Called when a Tetromino can no longer move down.
e Adds all of its occupied cells to the grid (converts falling block into static blocks).
e Triggers line-clearing logic.
clear_lines()
e Scans the grid for full rows (rows with no BLACK blocks).
e Removes full rows and inserts empty ones at the top.
e This is where the game gets its core challenge mechanic and scoring potential.
drop_one()
e Moves the current Tetromino down by one row.
e Ifit cannot move, it locks it in place.
hard_drop()
e Instantly drops the current Tetromino all the way to the lowest valid position and locks it.
e Triggered by pressing the SPACE key.
e Improves game speed and responsiveness.
rotate()
e Attempts to rotate the current Tetromino.
e If the rotated shape causes an invalid position, the rotation is reverted.
draw_board()
e Draws the current state of the grid, block by block.
e Uses the color stored in each grid cell.
e Only draws blocks that are not BLACK.
draw_current()
e Draws the current falling Tetromino using its get_cells() coordinates.
Main Game Loop (run())
This is the heart of the game — where everything is updated and rendered frame by frame.
Inside run():
1. Clock Tick
self.clock.tick (FPS)
Regulates the speed of the game to 60 frames per second.

2. Handle Events

for event in pygame.event.get () :

Processes keyboard input (left, right, rotate, hard drop, restart).
3. Auto-Fall Timer

if pygame.time.get ticks() - self.drop time > FALL DELAY:
self.drop one()

Every FALL_DELAY ms, the Tetromino automatically drops one row.
4. Render Scene
o Clear screen
o Draw locked blocks (draw_board())
o Draw current piece (draw_current())
o Show game over screen if needed
5. Display Frame
pygame.display.flip ()
Refreshes the screen with the updated content.
Game Over & Restart

e If a Tetromino spawns in an invalid position (i.e. overlapping blocks at the top), the game sets
self.running = False and shows a game over screen.

e Pressing the R key resets the game using the reset() method.

Run the Game

Theif _name__ =="__main__" block creates a Game object and starts the game loop:

if name == " main ":
Game () .run()

Optional Extensions
e Add a scoring system: Track lines cleared

e Add preview next piece

e Add a hold feature (swap current with held Tetromino)
¢ Add levels and speed increase

e Add sound effects or music

e Show a ghost piece (shadow where it will land)

