Python Platformer Tutorial Using Pygame

This tutorial shows you how to build a basic side-scrolling platformer game using Pygame. You'll learn
how to implement player movement, gravity, collision detection, collectible items, and camera
scrolling.

Project Setup
Step 1: Install Pygame

Install Pygame using pip if you haven't already:
pip install pygame
Step 2: Folder Structure

Your project folder should look like this:

platformer/
— platforml.py
— assets/
—7player.png # the player character
—tile.png # blocks the player walks on
—coin.png # collectible items

All image files should be PNG format with transparent backgrounds and roughly 64x64 pixels in size.

Initialize Pygame and Set Up the Screen

import pygame

import sys

import os

pygame.init ()

WIDTH, HEIGHT = 800, 600

screen = pygame.display.set mode ((WIDTH, HEIGHT))
pygame.display.set caption ("Pygame Platformer")
clock = pygame.time.Clock ()

FPS = 60

pygame.init() initializes all Pygame modules.

WIDTH and HEIGHT define the window resolution.

pygame.display.set_mode() creates the actual window.
pygame.display.set_caption() sets the window title.

clock and FPS control how fast the game loop runs (here: 60 frames per second).
Load Images and Define Tile Size

ASSETS = "assetgs"
TILE SIZE = 64

player img = pygame.image.load(os.path.join (ASSETS,
"player.png")) .convert alpha()

tile img = pygame.image.load (os.path.join (ASSETS,
"tile.png")) .convert alpha ()
coin img = pygame.image.load(os.path.join (ASSETS,
"coin.png")) .convert alpha ()

TILE_SIZE defines how big each tile is (64 pixels).

We load images using pygame.image.load() and convert them to include transparency with
convert_alpha() for better performance.

Define the Level Layout

level = [

" " !
" " !
" " ’
" " ’
" c c ",
" TTTT TT C ",
n n ,
n c C GII ,
"TTTT TTTTTT TTTT TTTT"

]
The level is a 2D grid made of characters:
'T' = tile/platform
'C' = coin
"' = empty space
'G' = goal (not yet implemented)

Each row is a line of tiles, starting from the top of the screen down.

Player Class (Movement, Gravity, Collision)
class Player (pygame.sprite.Sprite):
def init (self, x, y):

super (). init ()
self.image = player img
self.rect = self.image.get rect (topleft=(x, y))
self.vel = pygame.Vector2 (0, 0)
self.on ground = False
self.score = 0

We define a Player class using Pygame's Sprite system, which makes it easy to update, draw, and
manage game objects.

self.vel is a 2D vector representing the player's speed in both directions.
self.on_ground tracks whether the player can jump.

self.score keeps count of collected coins.

Player Update Method

Resets horizontal speed to zero each frame. Moves left/right with arrow keys. Only allows jumping if
the player is on the ground.

def update(self, tiles, coins):

keys = pygame.key.get pressed()

self.vel.x = 0

if keys[pygame.K LEFT]:
self.vel.x = -5

if keys[pygame.K RIGHT] :
self.vel.x = 5

if keys[pygame.K SPACE] and self.on ground:
self.vel.y = -18

Gravity increases downward velocity. Movement is split into two steps (horizontal then vertical) for
clean collision handling.

self.vel.y += 0.8 # gravity
if self.vel.y > 20:
self.vel.y = 20 # terminal fall speed

self.rect.x += self.vel.x
self.check collision(tiles, 'horizontal')

self.rect.y += self.vel.y
self.on ground = False
self.check collision(tiles, 'vertical')

Collision Checking

def check collision(self, tiles, direction):
for tile in tiles:
if self.rect.colliderect(tile.rect):
if direction == 'horizontal':
if self.vel.x > O:
self.rect.right = tile.rect.left
elif self.vel.x < O:
self.rect.left = tile.rect.right
elif direction == 'vertical':
if self.vel.y > 0:
self.rect.bottom = tile.rect.top
self.on _ground = True
self.vel.y = 0
elif self.vel.y < 0:
self.rect.top =
self.vel.y = 0

tile.rect.bottom

Uses axis-aligned bounding box (AABB) collision. Correctly adjusts the player's position if they bump
into a tile.

Coin Collection
Removes coins from the list when collected and increases the score.

for coin in coins:
if self.rect.colliderect (coin.rect) :
coins.remove (coin)
self.score += 1

Tile and Coin Classes

Both use Pygame's Sprite class to store position and image. Tile and Coin don’t need update logic;
they’re just static objects.

class Tile(pygame.sprite.Sprite):
def init (self, x, y):
super (). init ()
self.image = tile img
self.rect = self.image.get rect (topleft=(x, y))

class Coin(pygame.sprite.Sprite):
def init (self, x, y):
super (). init ()
self.image = coin_img
self.rect = self.image.get rect (topleft=(x, y))

Build the World

tiles = pygame.sprite.Group ()

coins = pygame.sprite.Group ()

player = Player (100, HEIGHT - 150)

player group = pygame.sprite.GroupSingle (player)

Build the world from the level layout
for y, row in enumerate (level) :
for x, cell in enumerate (row) :

if cell == "T":
tiles.add(Tile (x * TILE SIZE, y * TILE_SIZE))
elif cell == "C":

coins.add(Coin(x * TILE SIZE + 16, y * TILE SIZE + 16))

Multiplies x and y by TILE_SIZE to convert from grid coordinates to pixel coordinates.

Slight offset on coins centers them better visually.

Camera Scrolling and Game Loop

scroll x = 0
font = pygame.font.SysFont (None, 36)

while True:
for event in pygame.event.get () :
if event.type == pygame.QUIT:
pygame.quit ()
sys.exit ()

Basic event loop to close the game when the window is closed.

Update Logic
Scrolls the world based on the player’s position. Negative scroll_x moves the world left as the player
moves right.

player.update(tiles, coins)
scroll x = -player.rect.centerx + WIDTH // 2

Drawing the Scene
screen.f£ill((135, 206, 235)) # sky blue background

for tile in tiles:
screen.blit (tile.image, (tile.rect.x + scroll x,
tile.rect.y))
for coin in coins:
screen.blit (coin.image, (coin.rect.x + scroll x,
coin.rect.y))
screen.blit (player.image, (player.rect.x + scroll x,
player.rect.y))

Draw HUD
text = font.render (£"Coins: {player.score}", True, (0, 0, 0))
screen.blit (text, (20, 20))

pygame.display.flip ()
clock.tick (FPS)

Each object is drawn with the scroll_x offset to create the scrolling effect. pygame.display.flip()
updates the entire screen. clock.tick(FPS) enforces a maximum of 60 frames per second.

