
Chapter 7: Model Solutions
Below, you'll find sample soluƟons to the lab exercises in the book.

Lab Exercises 7.1
In this soluƟon, we define a class called BankAccount with the specified aƩributes and methods. The

__init__ method serves as the constructor and iniƟalizes the account aƩributes.

The deposit method adds the given amount to the account balance, while the withdraw method

subtracts the given amount from the account balance if the balance is sufficient. If the balance is not

sufficient, an error message is displayed.

The display_info method prints the account details: account number, account holder's name, and

account balance.

We create an instance of the BankAccount class, account1, and test the methods by deposiƟng,

withdrawing, and displaying the account informaƟon.

class BankAccount:

 def __init__(self, account_number, account_holder,
 initial_balance):

 self.account_number = account_number

 self.account_holder = account_holder

 self.account_balance = initial_balance

 def deposit(self, amount):

 self.account_balance += amount

 def withdraw(self, amount):

 if self.account_balance >= amount:

 self.account_balance -= amount

 else:

 print("Insufficient balance. Withdrawal denied.")

 def display_info(self):

 print("Account Number:", self.account_number)

 print("Account Holder:", self.account_holder)

 print("Account Balance:", self.account_balance)

Create objects and test the methods

account1 = BankAccount("123456789", "John Doe", 1000)

account1.display_info()

account1.deposit(500)

account1.display_info()

account1.withdraw(200)

account1.display_info()

account1.withdraw(1500) # insufficient balance

account1.display_info()

Lab Exercises 7.2
In this soluƟon, we define a parent class called Shape with the given aƩributes and a method called

display_info().

The Rectangle class and Circle class inherit from the Shape class using the super() funcƟon. They

have addiƟonal aƩributes (width and height for Rectangle, radius for Circle) and a method called

calculate_area() to calculate the area of the shape.

We create objects rectangle and circle, and test the methods by displaying the shape informaƟon

and calculaƟng the area.

You can create addiƟonal instances of Rectangle and Circle classes, and test the methods further as

needed.

import math

class Shape:

 def __init__(self, name, color):

 self.name = name

 self.color = color

 def display_info(self):

 print("Shape:", self.name)

 print("Color:", self.color)

class Rectangle(Shape):

 def __init__(self, name, color, width, height):

 super().__init__(name, color)

 self.width = width

 self.height = height

 def calculate_area(self):

 return self.width * self.height

class Circle(Shape):

 def __init__(self, name, color, radius):

 super().__init__(name, color)

 self.radius = radius

 def calculate_area(self):

 return math.pi * self.radius ** 2

Create objects and test the methods

rectangle = Rectangle("Rectangle", "Blue", 4, 6)

rectangle.display_info()

print("Area:", rectangle.calculate_area())

circle = Circle("Circle", "Red", 3)

circle.display_info()

print("Area:", circle.calculate_area())

Lab Exercises 7.3
In this soluƟon, we define a parent class called Vehicle with the aƩributes brand and year. It also has

the methods display_info() to print the brand and year, and start_engine() to print a generic message

for starƟng the engine.

The Car and Motorcycle classes inherit from the Vehicle class and override the start_engine() method

to print specific messages for starƟng a car engine and a motorcycle engine, respecƟvely.

We create objects of the classes and test the methods by displaying the vehicle informaƟon and

starƟng the engine.

class Vehicle:

 def __init__(self, brand, year):

 self.brand = brand

 self.year = year

 def display_info(self):

 print("Brand:", self.brand)

 print("Year:", self.year)

 def start_engine(self):

 print("Starting the engine of the vehicle.")

class Car(Vehicle):

 def start_engine(self):

 print("Starting the car engine.")

class Motorcycle(Vehicle):

 def start_engine(self):

 print("Starting the motorcycle engine.")

Create objects and test the methods

vehicle = Vehicle("Generic Brand", 2022)

vehicle.display_info()

vehicle.start_engine()

car = Car("Toyota", 2019)

car.display_info()

car.start_engine()

motorcycle = Motorcycle("Honda", 2020)

motorcycle.display_info()

motorcycle.start_engine()

Lab Exercises 7.4
1. Object-oriented programming (OOP) is a programming paradigm that organizes code into

objects, which are instances of classes. OOP focuses on creaƟng objects that have their own

state (aƩributes) and behavior (methods), and allows for code reuse and modularity. In OOP,

the emphasis is on modeling real-world enƟƟes as objects and interacƟng between them.

Procedural programming, focuses on wriƟng procedures or funcƟons that manipulate data. It

is based on a step-by-step execuƟon of instrucƟons. Procedural programming does not

involve the concept of objects and classes.

2. The purpose of creaƟng a parent class (such as Shape) in object-oriented programming is to

provide a blueprint or template that can be used to create derived or child classes. The

parent class contains common aƩributes and behaviors that are shared among the child

classes. It helps in achieving code reusability and promotes a hierarchical structure for

organizing and managing classes.

3. Inheritance is a fundamental concept in object-oriented programming that allows a child

class to inherit properƟes (aƩributes) and behaviors (methods) from a parent class. The child

class is said to inherit the characterisƟcs of the parent class. It enables code reuse and

promotes the concept of "is-a" relaƟonship.

By inheriƟng from a parent class, the child class automaƟcally gets access to the aƩributes

and methods defined in the parent class. This means the child class can use and override

those aƩributes and methods without needing to redefine them. Inheritance allows for the

extension and specializaƟon of classes, as child classes can add new aƩributes and methods

or override the exisƟng ones.

4. Shape with child classes

import math

class Shape:

 def area(self):

 pass

class Circle(Shape):

 def __init__(self, radius):

 self.radius = radius

 def area(self):

 return math.pi * self.radius**2

class Square(Shape):

 def __init__(self, side):

 self.side = side

 def area(self):

 return self.side**2

class Triangle(Shape):

 def __init__(self, base, height):

 self.base = base

 self.height = height

 def area(self):

 return (self.base * self.height) / 2

Create objects of child classes

circle = Circle(5)

square = Square(4)

triangle = Triangle(3, 6)

Calculate and print the areas

print("Circle Area:", circle.area())

print("Square Area:", square.area())

print("Triangle Area:", triangle.area())

5. See number 4

6. See number 4

7. EncapsulaƟon is one of the fundamental principles of object-oriented programming. It refers

to the bundling of data (aƩributes) and methods (behaviors) within a class. EncapsulaƟon

allows for the hiding of internal details and provides controlled access to the data and

methods through the class's public interface.

By encapsulaƟng data, we can ensure data integrity and prevent direct access or

modificaƟon from outside the class. The aƩributes are typically made private or protected,

and access to them is provided through geƩer and seƩer methods. EncapsulaƟon helps in

maintaining data consistency, improving code maintainability, and promoƟng code

reusability.

8. Polymorphism is a concept in object-oriented programming that allows objects of different

classes to be treated as objects of a common parent class. It allows the same method or

operator to behave differently depending on the object on which it is called.

Polymorphism enables code to be wriƩen in a more generic and flexible manner, as it allows

for the subsƟtuƟon of objects without affecƟng the behavior of the program. It promotes

code reusability and modularity.

Polymorphism can be achieved through method overriding (providing different

implementaƟons of a method in child classes) and method overloading (defining mulƟple

methods with the same name but different parameter lists).

9. Method overriding is a feature in object-oriented programming that allows a child class to

provide a different implementaƟon of a method defined in its parent class. When a child

class overrides a method, it provides a specialized implementaƟon of that method specific to

its own behavior.

In method overriding, both the parent and child classes have methods with the same name

and the same number and type of parameters. When the method is called on an object of

the child class, the overridden method in the child class is executed instead of the parent

class method.

Method overriding allows for the customizaƟon and extension of inherited methods. It is an

essenƟal aspect of polymorphism in object-oriented programming.

