
Chapter 6: Model Solutions
Below, you'll find sample solu ons to the lab exercises in the book.

Lab Exercises 6.1
In this solu on, we use a try-except block to handle poten al errors during user input. We a empt to

convert the user's input for length and width into float values using float(input()). If the user enters a

non-numeric value, a ValueError is raised. We also check if the length or width is nega ve, and if so,

we raise a ValueError to handle that case.

try:

 length = float(input("Enter length of the rectangle: "))

 width = float(input("Enter width of the rectangle: "))

 if length < 0 or width < 0:

 raise ValueError("Length and width must be positive.")

 area = length * width

 print("The area of the rectangle is:", area)

except ValueError as ve:

 print("Error:", str(ve))

except Exception as e:

 print("An error occurred:", str(e))

Lab Exercises 6.2
1. Excep on handling is a mechanism in programming that allows us to handle and manage

errors or excep onal events that may occur during the execu on of a program. It helps

prevent program crashes and provides a way to gracefully handle unexpected situa ons.

Excep on handling is important because it improves program robustness, maintains program

flow, and allows for appropriate error handling and recovery.

2. Opening and reading files: Excep on handling can be used to handle file-related errors such

as file not found, permission issues, or unexpected file content.

User input valida on: Excep on handling can handle invalid user input, such as non-numeric

values or out-of-range inputs, and provide appropriate error messages.

Network opera ons: Excep on handling can handle network-related errors, such as

connec on failures or meouts.

Database opera ons: Excep on handling can handle database-related errors, such as

connec on errors or query failures.

3. Excep on handling in Python is implemented using the try-except statement. The code that

may raise an excep on is placed inside the try block, and the code to handle the excep on is

placed inside the except block. If an excep on occurs in the try block, the corresponding

except block is executed.

4. The try block is used to enclose the code that may raise an excep on. It allows us to iden fy

the specific por on of code that may cause an excep on. If an excep on occurs within the

try block, the code execu on is immediately transferred to the corresponding except block.

5. You can catch and handle specific excep ons using the except block. You can specify the type

of excep on you want to handle a er the except keyword.

6. In this solu on, we use a while loop to repeatedly ask for user input un l a valid number is

entered. The float() func on is used to convert the user's input into a floa ng-point number.

If the conversion raises a ValueError, we display an error message and the loop con nues.

while True:

 try:

 number = float(input("Enter a number: "))

 break # Exit the loop if a valid number is entered

 except ValueError:

 print("Invalid input. Please enter a valid number.")

square = number ** 2

print("The square of", number, "is", square)

7. In this solu on, we use the open() func on to open the file in "read" mode and the with

statement to automa cally close the file a er reading. If the file is successfully opened, we

read its content and process it as required.

filename = "data.txt"

try:

 with open(filename, "r") as file:

 data = file.read()

 # Process the data as required

 print("File content:", data)

except FileNotFoundError:

 print("File not found:", filename)

except PermissionError:

 print("Permission denied. Cannot read file:", filename)

except Exception as e:

 print("An error occurred while reading file:", str(e))

