
Chapter 5: Model Solutions
Below, you'll find sample solu ons to the lab exercises in the book.

Lab Exercises 5.1
1. Calculate average

def calculate_average(numbers):

 if len(numbers) == 0:

 return 0 # Return 0 if the list is empty

 total = sum(numbers)

 average = total / len(numbers)

 return average

numbers = [5, 10, 15, 20]

average = calculate_average(numbers)

print("The average is:", average)

Lab Exercises 5.2
1. Calculate bill

def calculate_bill(base_price, tax_rate, discount_percentage):

 tax_amount = base_price * tax_rate

 discount_amount = base_price * discount_percentage

 total_amount = base_price + tax_amount - discount_amount

 return total_amount

base_price = 100

tax_rate = 0.08

discount_percentage = 0.2

total_bill = calculate_bill(base_price, tax_rate,
 discount_percentage)

print("Total Bill:", total_bill)

Lab Exercises 5.3
1. Calculate power

def calculate_power(base, exponent=2):

 return base ** exponent

Test the function

print(calculate_power(2)) # Output: 4 (square of 2)

print(calculate_power(3, 3)) # Output: 27 (3 raised to the
power of 3)

2. Func on called `print_person_details`

def print_person_details(name, age, country):

 print(f"Name: {name}, Age: {age}, Country: {country}")

Test the function

print_person_details("John", 25, "USA")

print_person_details("Emma", 30, "Canada")

3. Recursive func on called `fibonacci()`

def fibonacci(n):

 if n <= 1: # Base case: Return [0] for n <= 1

 return [0]

 elif n == 2: # Base case: Return [0, 1] for n == 2

 return [0, 1]

 else:

 fib_seq = fibonacci(n - 1) # Recursive call

 # Append the sum of the last two numbers in the sequence

 fib_seq.append(fib_seq[-1] + fib_seq[-2])

 return fib_seq # Return the updated Fibonacci sequence

Print the Fibonacci sequence up to the 10th term

print(fibonacci(10))

4. A parameter is a variable defined in the func on declara on. It represents a value that the

func on expects to receive when it is called.

An argument is a value or expression passed to a func on when it is called. Arguments are assigned

to the corresponding parameters inside the func on.

5. A built-in func on is a func on that is provided as part of the Python programming language.

These func ons are readily available and can be used without requiring any addi onal imports or

installa ons. Examples of built-in func ons include `print()`, `len()`, `type()`, `range()`, etc.

6. A user-defined func on is a func on created by the programmer to perform a specific task or set

of opera ons. These func ons are defined using the `def` keyword and can be customized to suit the

requirements of the program. User-defined func ons are created to encapsulate reusable pieces of

code and promote code modularity and reusability.

7. A func on is considered recursive if it calls itself during its execu on. Recursion involves solving a

problem by breaking it down into smaller, simpler instances of the same problem un l a base case is

reached. The base case is a condi on that stops the recursion and provides the result or termina on

point. Recursive func ons are useful for solving problems that can be divided into subproblems that

are iden cal in nature but smaller in size.

8. A local variable is a variable that is declared inside a func on and can only be accessed within that

func on. It has a limited scope and exists only for the dura on of the func on's execu on. Local

variables are typically used for temporary storage or intermediate calcula ons within the func on.

A global variable, is a variable that is defined outside of any func on and can be accessed from

anywhere within the program, including inside func ons. It has a global scope and exists throughout

the en re program's execu on. Global variables are useful for storing data that needs to be accessed

or modified by mul ple parts of the program. However, it is generally recommended to minimize the

use of global variables to maintain code clarity and avoid unintended side effects.

