
Chapter 5: Model Solutions
Below, you'll find sample soluƟons to the lab exercises in the book.

Lab Exercises 5.1
1. Calculate average

def calculate_average(numbers):

 if len(numbers) == 0:

 return 0 # Return 0 if the list is empty

 total = sum(numbers)

 average = total / len(numbers)

 return average

numbers = [5, 10, 15, 20]

average = calculate_average(numbers)

print("The average is:", average)

Lab Exercises 5.2
1. Calculate bill

def calculate_bill(base_price, tax_rate, discount_percentage):

 tax_amount = base_price * tax_rate

 discount_amount = base_price * discount_percentage

 total_amount = base_price + tax_amount - discount_amount

 return total_amount

base_price = 100

tax_rate = 0.08

discount_percentage = 0.2

total_bill = calculate_bill(base_price, tax_rate,
 discount_percentage)

print("Total Bill:", total_bill)

Lab Exercises 5.3
1. Calculate power

def calculate_power(base, exponent=2):

 return base ** exponent

Test the function

print(calculate_power(2)) # Output: 4 (square of 2)

print(calculate_power(3, 3)) # Output: 27 (3 raised to the
power of 3)

2. FuncƟon called `print_person_details`

def print_person_details(name, age, country):

 print(f"Name: {name}, Age: {age}, Country: {country}")

Test the function

print_person_details("John", 25, "USA")

print_person_details("Emma", 30, "Canada")

3. Recursive funcƟon called `fibonacci()`

def fibonacci(n):

 if n <= 1: # Base case: Return [0] for n <= 1

 return [0]

 elif n == 2: # Base case: Return [0, 1] for n == 2

 return [0, 1]

 else:

 fib_seq = fibonacci(n - 1) # Recursive call

 # Append the sum of the last two numbers in the sequence

 fib_seq.append(fib_seq[-1] + fib_seq[-2])

 return fib_seq # Return the updated Fibonacci sequence

Print the Fibonacci sequence up to the 10th term

print(fibonacci(10))

4. A parameter is a variable defined in the funcƟon declaraƟon. It represents a value that the

funcƟon expects to receive when it is called.

An argument is a value or expression passed to a funcƟon when it is called. Arguments are assigned

to the corresponding parameters inside the funcƟon.

5. A built-in funcƟon is a funcƟon that is provided as part of the Python programming language.

These funcƟons are readily available and can be used without requiring any addiƟonal imports or

installaƟons. Examples of built-in funcƟons include `print()`, `len()`, `type()`, `range()`, etc.

6. A user-defined funcƟon is a funcƟon created by the programmer to perform a specific task or set

of operaƟons. These funcƟons are defined using the `def` keyword and can be customized to suit the

requirements of the program. User-defined funcƟons are created to encapsulate reusable pieces of

code and promote code modularity and reusability.

7. A funcƟon is considered recursive if it calls itself during its execuƟon. Recursion involves solving a

problem by breaking it down into smaller, simpler instances of the same problem unƟl a base case is

reached. The base case is a condiƟon that stops the recursion and provides the result or terminaƟon

point. Recursive funcƟons are useful for solving problems that can be divided into subproblems that

are idenƟcal in nature but smaller in size.

8. A local variable is a variable that is declared inside a funcƟon and can only be accessed within that

funcƟon. It has a limited scope and exists only for the duraƟon of the funcƟon's execuƟon. Local

variables are typically used for temporary storage or intermediate calculaƟons within the funcƟon.

A global variable, is a variable that is defined outside of any funcƟon and can be accessed from

anywhere within the program, including inside funcƟons. It has a global scope and exists throughout

the enƟre program's execuƟon. Global variables are useful for storing data that needs to be accessed

or modified by mulƟple parts of the program. However, it is generally recommended to minimize the

use of global variables to maintain code clarity and avoid unintended side effects.

