
Chapter 2: Model Solutions
Below, you'll find sample solu ons to the lab exercises in the book.

Lab Exercises 2.1
1. Syntax in programming refers to the set of rules that define the structure and composi on of

a programming language. It specifies how statements, expressions, and other constructs

should be wri en in order to be considered valid and executable. Adhering to syntax rules is

important because they ensure that the code is correctly interpreted by the compiler or

interpreter. Viola ng syntax rules can lead to syntax errors, which prevent the code from

running or cause unexpected behavior.

2. Reserved words or keywords in Python are words that are part of the language's syntax and

have special meanings. They are reserved for specific purposes and cannot be used as

variable names or iden fiers. The reason for this restric on is to maintain the consistency

and clarity of the language. By reserving certain words, Python ensures that they are always

interpreted in a specific way, avoiding poten al conflicts with user-defined names.

3. Three reserved words in Python and their purposes are:

 if: Used to define condi onal statements. It allows the execu on of a block of code only

if a certain condi on is sa sfied.

 for: Used to create loops. It iterates over a sequence of items and executes a block of

code for each item.

 def: Used to define func ons. It allows the crea on of reusable blocks of code that can

be called from other parts of the program.

4. Python uses indenta on to define code blocks. Indenta on refers to the spaces or tabs

placed at the beginning of lines to indicate the hierarchy and grouping of statements. Code

blocks are formed by lines with the same level of indenta on. Consistent indenta on is

important because it is the primary means of structuring code in Python. Inconsistencies in

indenta on can lead to syntax errors or alter the intended logic of the program.

5. Code snippet that demonstrates the use of indenta on

def greet(name):
 if name == "Alice":
 print("Hello, Alice!")
 else:
 print("Hello, stranger!")
greet("Bob")

6. Comments in programming are non-executable lines used to provide explana ons,

documenta on, or annota ons within the code. They are ignored by the interpreter or

compiler and are meant for human readers. Comments enhance code clarity and readability

by providing addi onal context, explana ons of complex logic, or reminders for future

modifica ons.

7. Comments facilitate code maintenance and collabora on in a team se ng by providing

informa on that helps other developers understand the code. They can explain the purpose

of func ons, describe input/output formats, document algorithms, or provide warnings and

TODOs for future improvements. Comments also allow team members to communicate

about specific code sec ons, discuss poten al issues, or leave feedback.

8. During development or debugging, it is common to temporarily disable or comment out

blocks of code. This is done to exclude certain code segments from execu on without

dele ng them. Commented-out code can be useful for tes ng alterna ve approaches or

temporarily removing code that might be causing errors. However, commented-out code

should be avoided in produc on codebases because it can make the code harder to

understand and maintain.

Lab Exercises 2.2
1. The input() func on is used to get data from the user. It prompts the user with a message,

waits for input, and returns the entered data as a string.

2. To print data to the console in Python, you can use the print() func on.

3. Ask the user for their name and prints a welcome message

name = input("Enter your name: ")
print("Welcome,", name, "!")

Lab Exercises 2.3
1. Variables in programming are used to store and manipulate data. They act as named

containers that hold values in computer memory. Variables play a crucial role in

programming by allowing us to store and retrieve data, perform calcula ons, make decisions

based on condi ons, and create flexible and dynamic programs.

2. Integers and floats are two different numeric data types:

a. Integers (int) are whole numbers without decimal points. For example: 42, -10, 0.

b. Floats (float) represent numbers with decimal points or frac onal parts. For

example: 3.14, -2.5, 0.0.

3. Strings in programming are sequences of characters enclosed in single quotes ('') or double

quotes (""). They are commonly used to represent text and are essen al for working with

textual data. Strings can contain le ers, numbers, symbols, and whitespace.

my_string = "Hello, World!"
print(my_string) # Output: Hello, World!

4. String concatena on is the process of combining two or more strings into a single string. In

Python, concatena on can be achieved using the + operator.

str1 = "Hello"
str2 = "World"
result = str1 + " " + str2
print(result) # Output: Hello World

5. Individual characters within a string can be accessed using indexing. Indexing in Python starts

from 0, where the first character has an index of 0, the second character has an index of 1,

and so on. Nega ve indexing starts from -1, where the last character has an index of -1, the

second-to-last character has an index of -2, and so forth.

my_string = "Hello"
print(my_string[0]) # Output: H
print(my_string[3]) # Output: l
print(my_string[-1]) # Output: o

6. String slicing in Python allows you to extract a por on of a string by specifying a range of

indices. It is done using the slicing operator [:], where the start index is inclusive, and the end

index is exclusive.

my_string = "Python Programming"
sliced_string = my_string[7:18]
print(sliced_string) # Output: Programming

7. String forma ng in Python is a way to create forma ed output by subs tu ng placeholders

with values using the .format() method.

name = "Alice"
age = 25
message = "My name is {} and I'm {} years old."
 .format(name, age)
print(message)

8. Three commonly used string methods in Python are:

my_string = "hello"
print(my_string.upper()) # Output: HELLO

my_string = "banana"
print(my_string.replace("a", "e")) # Output: benene

my_string = "Hello, World!"
print(my_string.startswith("Hello")) # Output: True

9. The boolean data type in Python represents logical values. It has two possible values: True

and False. Booleans are used for making logical comparisons, condi onal statements, and

determining the truthfulness or falseness of an expression.

10. age = 27

11. height = 1.75

12. name = "John Doe"

13. Concatena ng the "name" and "age"

message = "My name is " + name + " and I am " + str(age) + "
 years old."
print(message)

14. Accessing the third character

my_string = "Hello, World!"
third_character = my_string[2]
print(third_character)

15. Slicing the string "Python Programming"

my_string = "Python Programming"
sliced_string = my_string[7:]
print(sliced_string)

16. Using string forma ng to create a message that includes the values of the variables "name"

and "height":

message = "My name is {} and my height is {}
 meters.".format(name, height)
print(message)

17. Using the .upper() method to convert the string "hello" to uppercase

my_string = "hello"
uppercase_string = my_string.upper()
print(uppercase_string)

18. Using the .replace() method

my_string = "banana"
replaced_string = my_string.replace("a", "e")
print(replaced_string)

19. Checking if the string "Hello, World!" starts with the substring "Hello"

my_string = "Hello, World!"
starts_with_hello = my_string.startswith("Hello")

print(starts_with_hello)

20. is_raining = False

Lab Exercises 2.4
1. Arithme c operators perform mathema cal opera ons, comparison operators compare

values, and assignment operators assign values to variables. Examples of these operators

are:

 Arithme c operators: + (addi on), - (subtrac on), * (mul plica on), / (division), %

(modulus), ** (exponen a on), // (floor division).

 Comparison operators: == (equality), != (inequality), > (greater than), < (less than), >=

(greater than or equal to), <= (less than or equal to).

 Assignment operators: = (assignment), += (addi on assignment), -= (subtrac on

assignment), *= (mul plica on assignment), /= (division assignment), %= (modulus

assignment), **= (exponen a on assignment), //= (floor division assignment).

2. sum_result = x + y

3. result = a * b – c

4. is_adult = age >= 18

5. is_long_name = len(name) > 5

6. remainder = numerator % denominator

7. is_valid = (x == 10) or (y == 20)

8. num = int(num_str)

9. pi_str = str(pi)

10. is_valid_bool = bool(is_valid)

11. numbers_tuple = tuple(numbers)

12. Type cas ng, also known as type conversion, is the process of changing the data type of a

value or variable from one type to another. It allows you to perform opera ons or assign

values between different data types. Examples of type cas ng include conver ng an integer

to a float, a string to an integer, or a list to a tuple.

Lab Exercises 2.5
1. Program to determine if the user is an adult or a minor based on their age:

age = int(input("Enter your age: "))

if age >= 18:

 print("You are an adult")

else:

 print("You are a minor")

2. Program to determine if a number is posi ve, nega ve, or zero:

number = float(input("Enter a number: "))

if number > 0:

 print("Positive")

elif number < 0:

 print("Negative")

else:

 print("Zero")

3. Program to check if a given year is a leap year:

year = int(input("Enter a year: "))

if (year % 4 == 0 and year % 100 != 0) or year % 400 == 0:

 print("Leap year")

else:

 print("Not a leap year")

4. Program to determine the le er grade based on a numeric grade:

grade = float(input("Enter the grade: "))

if grade >= 90:

 print("A")

elif grade >= 80:

 print("B")

elif grade >= 70:

 print("C")

elif grade >= 60:

 print("D")

else:

 print("F")

5. Program to find the maximum among three numbers:

num1 = float(input("Enter the first number: "))

num2 = float(input("Enter the second number: "))

num3 = float(input("Enter the third number: "))

maximum = max(num1, num2, num3)

print("The maximum number is:", maximum)

6. Program to print the corresponding month name based on the input month number:

month = int(input("Enter a month number: "))

if month == 1:

 print("January")

elif month == 2:

 print("February")

elif month == 3:

 print("March")

elif month == 4:

 print("April")

elif month == 5:

 print("May")

elif month == 6:

 print("June")

elif month == 7:

 print("July")

elif month == 8:

 print("August")

elif month == 9:

 print("September")

elif month == 10:

 print("October")

elif month == 11:

 print("November")

elif month == 12:

 print("December")

else:

 print("Invalid month number")

7. Program to check if a given string is a palindrome:

word = input("Enter a word: ")

if word == word[::-1]:

 print("Palindrome")

else:

 print("Not a palindrome")

8. Program to check if a number is divisible by both 3 and 5:

number = int(input("Enter a number: "))

if number % 3 == 0 and number % 5 == 0:

 print("Divisible by 3 and 5")

else:

 print("Not divisible by 3 and 5")

9. Program to calculate the discount based on the total amount of a shopping cart:

total_amount = float(input("Enter the total amount: "))

if total_amount >= 100:

 discount = total_amount * 0.1

elif total_amount >= 50:

 discount = total_amount * 0.05

else:

 discount = 0

discounted_amount = total_amount - discount

print("Discounted amount:", discounted_amount)

10. Program to determine if a year is a leap year, century leap year, or neither:

year = int(input("Enter a year: "))

if (year % 4 == 0 and year % 100 != 0) or year % 400 == 0:

 if year % 100 == 0:

 print("Century leap year")

 else:

 print("Leap year")

else:

 print("Not a leap year or century leap year")

Lab Exercises 2.6
1. Program to print each number in a list mul plied by 2 using a for loop:

numbers = [1, 2, 3, 4, 5]

for number in numbers:

 result = number * 2

 print(result)

2. Program to print each character of a string in reverse order using a while loop:

string = input("Enter a string: ")

length = len(string)

index = length - 1

while index >= 0:

 print(string[index])

 index -= 1

3. Program to count the number of vowels in a string using a for loop:

string = input("Enter a string: ")

vowels = 'aeiou'

count = 0

for char in string:

 if char.lower() in vowels:

 count += 1

print("Total count of vowels:", count)

4. Program to calculate the sum of posi ve numbers entered by the user using a while loop:

sum_positive = 0

while True:

 number = int(input("Enter a number (negative to quit): "))

 if number < 0:

 break

 sum_positive += number

print("Sum of positive numbers:", sum_positive)

5. Program to greet names based on the first le er using a for loop:

names = ['Alice', 'Bob', 'Anna', 'David']

for name in names:

 if name[0] == 'A':

 print("Hello,", name + "!")

 else:

 print("Greetings,", name + "!")

6. Program to guess a random number generated by the computer using a while loop:

import random

random_number = random.randint(1, 10)

while True:

 guess = int(input("Guess the number (1-10): "))

 if guess == random_number:

 print("Congratulations! You guessed correctly.")

 break

 elif guess > random_number:

 print("Too high")

 else:

 print("Too low")

7. Program to print words in lowercase or uppercase based on their length using a for loop:

words = ['apple', 'banana', 'cat', 'elephant']

for word in words:

 if len(word) > 5:

 print(word.upper())

 else:

 print(word.lower())

8. Program to print the square of each number in a range using a for loop:

for number in range(1, 11):

 square = number ** 2

 print(square)

9. Program to count the number of words with more than 3 characters in a sentence using a for loop:

sentence = input("Enter a sentence: ")

words = sentence.split()

count = 0

for word in words:

 if len(word) > 3:

 count += 1

print("Number of words with more than 3 characters:", count)

